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N E U R O D E G E N E R AT I O N

Early-onset sleep alterations found in patients with 
amyotrophic lateral sclerosis are ameliorated by orexin 
antagonist in mouse models

 


  

Sleep alterations have been described in several neurodegenerative diseases yet are currently poorly characterized in 
amyotrophic lateral sclerosis (ALS). This study investigates sleep macroarchitecture and related hypothalamic signaling 
disruptions in ALS. Using polysomnography, we found that both patients with ALS as well as asymptomatic C9ORF72 
and SOD1 mutation carriers exhibited increased wakefulness and reduced non–rapid eye movement sleep. Increased 
wakefulness correlated with diminished cognitive performance in both clinical cohorts. Similar changes in sleep 
macroarchitecture were observed in three ALS mouse models (Sod1G86R, FusΔNLS/+, and TDP43Q331K). A single oral ad-
ministration of a dual-orexin receptor antagonist or intracerebroventricular delivery of melanin-concentrating hormone 
(MCH) through an osmotic pump over 15 days partially normalized sleep patterns in mouse models. MCH treatment 
did not extend the survival of Sod1G86R mice but did decrease the loss of lumbar motor neurons. These findings suggest 
MCH and orexin signaling as potential targets to treat sleep alterations that arise in early stages of the disease.

INTRODUCTION
Amyotrophic lateral sclerosis (ALS), the most common adult-onset 
motor neuron disorder, is a fatal disease, mostly leading to death 
through progressive paralysis and respiratory insufficiency within 2 
to 3 years after the onset of symptoms (1). Depending on popula-
tion, the median age of onset for sporadic ALS is 55 to 65 years of 
age (2). Sporadic ALS (90 to 95%) accounts for the majority of cases, 
with the remaining 5 to 10% being hereditary, known as familial 
ALS (fALS) (3). More than 30 different genes have been associated 
with fALS, with mutations in C9ORF72, SOD1, TARDBP, and FUS 
being the most frequent causes of fALS (4–8).

ALS is clinically defined as the simultaneous degeneration of lower 
motor neurons in the brainstem and spinal cord and of upper motor 
neurons in the motor cortex. In recent years, ALS has been demon-
strated to broadly affect multiple brain functions and in particular 
nonmotor brain regions, including the hypothalamus. Hypothalamic 
atrophy was observed in patients with ALS and presymptomatic risk 
gene carriers using magnetic resonance imaging (9), a finding con-
firmed by several other groups (10–12). Furthermore, there were hy-
pothalamic functional abnormalities in the response to drugs or 
fasting, in both patients with ALS and mouse models (13). Recently, we 
observed prominent neurodegeneration and aggregates of transactive 

response DNA binding protein 43 (TDP-43) in the lateral hypotha-
lamic area (LHA) (14), consistent with previous studies (15). In the 
LHA, the key neuronal populations, melanin-concentrating hormone 
(MCH) neurons and orexin/hypocretin (ORX) neurons, are critical in 
sleep regulation (16–18), and both neuronal populations appear af-
fected in patients with ALS (14, 19, 20).

Degeneration of MCH and ORX neurons in ALS raises the 
possibility that sleep could be altered in ALS. Only a few studies 
have investigated sleep in ALS. Overall, in studies available to 
date, more than half of patients with ALS report poor subjective 
sleep quality, and a few polysomnography studies suggest altered 
sleep architecture among patients with ALS (21–23). However, 
previous studies included advanced patients with ALS who may 
have developed respiratory insufficiency due to disease progres-
sion and are therefore not suitable for determining whether sleep 
alterations occur independently and possibly before motor symp-
toms. Thus, it remained unknown whether sleep is primarily af-
fected in ALS (24).

In this study, we analyzed sleep structure in two cohorts: one 
comprising 56 patients with early sporadic ALS and 41 healthy indi-
viduals and another including 62 first-grade relatives of fALS cases, 
which we divided by genotyping into 35 presymptomatic risk gene 
carriers of ALS mutations and 27 control participants. These gene 
carriers and control participants were each first-degree relatives of 
patients with confirmed fALS; genetic testing for assignment was 
performed on a purely scientific basis after the sleep study. We con-
trolled for possible respiratory impairment during sleep by transcu-
taneous capnometry because nocturnal hypoventilation alters the 
sleep architecture (25) and can be detected earlier by capnometry 
than by oxygen saturation measurement. We observed early promi-
nent sleep alterations in both cohorts and replicated a major part of 
these observations in three mouse models. Inhibition of ORX signal-
ing or MCH intracerebroventricular supplementation was sufficient 
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to rescue sleep alterations in ALS mouse models. MCH could also 
preserve motor neurons in an ALS mouse model (Sod1G86R). Over-
all, our results demonstrate that sleep alterations are already prodro-
mal and severe in ALS and are causally related to abnormalities in 
MCH and ORX signaling.

RESULTS
Patients in the early stages of ALS without respiratory 
impairment show altered sleep macroarchitecture
To investigate the prevalence of sleep alterations in patients with 
early symptomatic ALS, we designed a prospective cohort. Three 
main exclusion criteria were the presence of (i) sleep apnea, (ii) pe-
riodic limb movements in sleep, or (iii) nocturnal hypercapnia (see 
Fig. 1A). In all, 56 patients and 41 age- and sex-matched controls 
were screened, and 33 patients with ALS and 32 controls met the 
inclusion criteria (Fig. 1A and Table 1).

Patients with ALS and controls had similar age, sex distribution, 
and body mass index. The cohort is described in Table 1. In the ALS 
group, functional status was recorded with ALSFRS-R (ALS func-
tional rating scale revised) at the time of polysomnography (26). The 
resulting mean of 40.51 (± 0.78) indicates that the group of patients 
was at the early stages of the disease.

Analysis of questionnaires did not reveal any differences in subjec-
tive sleep between patients with ALS and controls (fig. S1, A and B). 
Polysomnography results were analyzed using YASA deep learning 
algorithm (27), and in addition to the manual evaluation of the re-
cordings based on the evaluation criteria of the American Academy of 
Sleep Medicine, version 3.0 (28), each recording was scored over a 
time window of 6 hours after turning off the lights. Spectral analysis of 
the polysomnography recordings showed decreased total power and a 
decreased sigma band along with an increased beta band in patients 
with ALS (fig. S2). We used eight randomly chosen hypnograms 
among all recordings and compared the deep learning sleep analysis 
with manually analyzed hypnograms (Fig. 1B). We found that both 
analyses were highly concordant (91.6 ± 2.58%; fig. S3). The evalua-
tion of the hypnograms independent of the 6-hour time window, by 
considering the total night measurement from the time the light was 
switched off, showed an increased total sleep time and a longer time in 
bed in patients with ALS (Fig. 1C). In addition, patients with ALS 
showed an increased sleep onset latency (Fig. 1D) with higher sleep 
fragmentation compared with controls. The distribution of sleep stag-
es in patients with ALS was severely altered (fig. S4) with an increased 
percentage of wake (Fig. 1E) and rapid eye movement (REM) sleep 
(Fig. 1F) and decreased non-REM (NREM) sleep (Fig. 1G). Decreased 
NREM sleep was mostly due to a strong decrease in NREM3 (deep 
sleep) and NREM2. NREM1 (light sleep) was preserved (Fig. 1, H to 
J). Principal components analysis (PCA) using sleep parameters and 
age showed a complete segregation of patients with ALS from controls 
(Fig. 1K). Thus, sleep macroarchitecture is altered in patients with 
ALS, even without respiratory insufficiency as a confounding factor.

Presymptomatic ALS risk gene carriers show altered 
sleep macroarchitecture
Our initial cohort analysis revealed sleep alterations in patients with 
early-stage ALS without hypercapnia, yet it could not confirm whether 
these alterations occur before motor symptoms appear. There-
fore, we included a second prospective cohort study that consisted of 
presymptomatic ALS risk gene carriers using the same inclusion and 

exclusion criteria (see Fig. 2A). A total of 62 first-degree relatives of 
patients with fALS were initially screened, of whom 35 individuals 
had a positive fALS gene test result. Participants were blinded to their 
test results but could opt to undergo counseling if they wanted to 
learn their mutation status in accordance with German legislation 
after the study visits. Of these, 27 individuals met the above inclusion 
criteria (SOD1, n = 7; C9ORF72, n = 12). The first-degree relatives 
with a negative genetic test constituted the control group of this co-
hort (fALS controls: 27 screened, 19 meeting inclusion criteria) (Fig. 
2A and Table 2). Like in patients with early ALS, sleep questionnaires 
did not reveal alterations in subjective sleep quality in ALS risk gene 
carriers (fig. S5, A and B), but the spectral analysis of the polysom-
nography recordings showed decreased total power in C9ORF72 muta-
tion carriers, and SOD1 mutation carriers showed a similar nonsignificant 
trend (P  =  0.06). SOD1 carriers showed increased beta and gamma 
bands and decreased alpha and sigma bands, and C9ORF72 carriers 
showed decreases in delta, theta, alpha, and sigma bands (fig. S6). 
Consistent with this, presymptomatic ALS risk gene carriers already 
exhibited macroarchitectural alterations of their sleep pattern with 
partly varying results, which were observed depending on the muta-
tion. Total sleep time was decreased in SOD1 gene carriers but un-
changed in C9ORF72 gene carriers (Fig. 2, B and C, and fig. S7). In 
SOD1 and C9ORF72 mutation carriers, there was a notable increase 
in the proportion of wake epochs after the onset of sleep (Fig. 2E). 
Only in C9ORF72 mutation carriers was longer sleep onset latency 
observed (Fig. 2D). In addition, in C9ORF72 mutation carriers, we 
found an increased percentage of wake phases (Fig. 2E) and of REM 
sleep (Fig. 2F) as well as decreased NREM sleep (Fig. 2G), caused by 
decreased NREM2 and NREM3 (Fig. 2, H to J). SOD1 mutation car-
riers displayed intermediate sleep changes with increased wake and 
decreased NREM3 but normal REM sleep. Consistent with this, 
PCA revealed a more defined segregation of C9ORF72 mutation 
carriers from controls than SOD1 mutation carriers (Fig. 2K). These 
results show that sleep alterations are present in individuals carrying 
ALS risk genes, presumably many years before expected motor 
symptom onset.

Sleep defects correlate with cognitive deficits
Both patients with ALS and presymptomatic risk gene carriers un-
derwent cognitive screening using the Edinburgh Cognitive and 
Behavioural ALS Screen (ECAS) during their clinical follow-up to 
determine whether the observed sleep alterations could be related to 
cognitive performance. To this aim, we performed a correlation 
analysis between ECAS subscores and sleep parameters in the whole 
population of affected or at-risk individuals (Fig. 3A). After correc-
tion for multiple comparisons, we observed a negative correlation 
between the percentage of wake and the verbal fluency subscore as 
well as the total ECAS score (Fig. 3, A to C). This negative correla-
tion was also observed in patients with ALS (fig. S8A), SOD1 (fig. 
S8B), or C9ORF72 (fig. S8C) mutation carriers when analyzed sepa-
rately. Thus, sleep disturbances are related to cognitive performance 
in ALS, especially verbal fluency.

Three mouse models of ALS show altered 
sleep macroarchitecture
The presence of altered sleep macroarchitecture in patients with ALS 
and presymptomatic risk gene carriers prompted us to investigate sleep 
patterns in transgenic ALS mouse models. We used three models with 
different ALS-causing genes and vastly divergent disease progression. 
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Transgenic expression of G86R mutation in Sod1 leads to severe, fast-
progressing motor symptoms around 90 days old and a death around 
120 days (29, 30). Knock-in expression of a C terminally truncated FUS 
protein or prion-promoter driven expression of Q331K mutant form of 
TDP-43 leads to mild, late-onset motor neuron disease with a mild 

symptomatic onset around 4 and 10 months, respectively (31–34). To 
characterize sleep patterns, we implanted intracortical electrodes dur-
ing adulthood and performed electroencephalography (EEG) 5 
to 6 days after surgery (Fig. 4A). Quantification of sleep states through 
manual analysis, or automated sleep analysis using NeuroScore, showed 
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Fig. 1. Sleep alterations in patients with early ALS. (A) Flow chart of the study. (B) Representative hypnograms of a healthy control and one patient with sporadic 
ALS. Monitoring was performed over a 6-hour period (1 epoch = 30 s). (C) Total sleep time (total duration of REM, NREM1, NREM2, and NREM3 in the sleep period time). 
(D) Sleep onset latency (latency to the first epoch of any sleep). (E to J) Percentage of wake (E), REM (F), NREM (G), NREM1 (H), NREM2 (I), and NREM3 (J). (K) PCA of patients 
with ALS versus healthy controls using sleep parameters and age. In all panels, men are shown in green and women in purple. Corrected P values are shown. Percentages 
of REM and NREM were calculated over the total sleep time, excluding wake episodes. Percentage of wake was calculated over the whole recording period. ****P < 0.0001, 
independent Student’s t test with Welch’s t test correction; sex effect P = 0.4296. Data are presented as median and interquartile ranges.
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an overall concordance of 94.49  ± 2.27% (n = 6; fig. S9), and hypno-
grams obtained were highly similar in a pilot experiment. We thus re-
lied on automated sleep analysis for further experiments. Hypnograms 
of Sod1G86R mice showed increased wake, decreased NREM, and de-
creased REM sleep (Fig. 4, B to E) at 75 days of age, before the onset of 
motor defects. In contrast, there were no alterations in sleep patterns at 
3 months of age in Fus∆NLS/+ mice, an asymptomatic age in this strain 
(Fig. 4, F to I). At the symptomatic age of 10 months old, Fus∆NLS/+ mice 
showed increased wake, decreased NREM, and decreased REM sleep 
(Fig. 4, J to M). Spectral analysis further confirmed these results with 
decreased total power as well as decreased delta and alpha bands along 
with increased beta and gamma bands, consistent with our recent re-
port (fig. S10) (35). In contrast with human patients with ALS, mouse 
models showed decreased power in the theta band (fig. S10). A similar 
phenotype was observed in transgenic TDP43Q331K mice (figs. S11 and 
S12). In all three mouse models, the sleep phenotype was consistently 
observed in both male and female mice. Thus, ALS mouse models reca-
pitulate the early sleep alterations observed in humans, except for the 
percentage of REM sleep (and theta band power), which is increased in 
humans and decreased in mice.

Sleep alterations in mouse models are partially 
rescued by MCH
Because MCH neurons degenerate in ALS (14) and MCH promotes 
sleep, particularly REM sleep (17,  36,  37), we hypothesized that 
MCH administration could rescue sleep alterations. To test this, we 
implanted an intracerebroventricular osmotic pump in parallel 
with intracortical electrodes for EEG (Fig. 5A). Pumps were filled 
with either vehicle or MCH (14). Vehicle-treated Sod1G86R mice 
showed sleep alterations similar to those of untreated Sod1G86R 
mice. MCH treatment increased REM sleep in Sod1G86R mice and 
decreased wake duration (Fig. 5, B to E). However, MCH infusion 
exacerbated the NREM sleep deficit (Fig. 5, B to E). Similarly, par-
tial normalizing effects of MCH on sleep architecture were also ob-
served in Fus∆NLS/+ mice (Fig. 5, F to I). Although MCH did not 
modulate wake duration in wild-type (WT) mice, it did increase 
REM sleep and decrease NREM sleep (Fig. 5, B to I). Overall, MCH 
supplementation could ameliorate REM sleep alterations as well as 
NREM and wake alterations in at least two of the studied ALS 
mouse models.

Sleep alterations in mouse models are fully rescued by a 
dual orexin receptor antagonist
ORX and MCH neurons play partially antagonistic roles in sleep/
wake regulation. We previously showed that hcrt mRNA expression 

is decreased in Sod1G86R mice with the onset of symptoms (16), and 
orexin expression was showed to be lost in postmortem tissue in 
patients (20). We thus hypothesized that ORX neurons could also be 
involved in the observed sleep alterations, through abnormal orexin 
signaling changes. We first characterized ORX neuronal counts in 
presymptomatic Sod1G86R (75 days of age) and Fus∆NLS/+ (10 months 
of age) mice but did not observe a loss of this neuronal population 
in these mouse models (fig. S13, A to D). Neither ORX nor MCH 
neurons showed prominent p62 or ubiquitin pathology before end 
stage in Sod1G86R mice (fig. S14, A to D), arguing against the sleep 
phenotype being caused by loss of ORX neurons or neuronal dys-
function caused by pathological aggregates. Orexin and MCH can 
induce gene expression changes in neurons. For instance, orexin re-
ceptor stimulation leads to increased expression of Sgk1 and Junb 
(38) in hypothalamic neurons, and MCH stimulation increases 
Foxo1 and Sirt1 expression in the hypothalamus (39). We observed 
that Sgk1 and Junb expression were increased in Sod1G86R (75 days of 
age) and Fus∆NLS/+ (4 months of age) mouse hypothalami (fig. S15), 
and Foxo1 and Sirt1 expressions were decreased (fig. S15, A and B). 
These results suggest increased orexinergic and decreased MCHergic 
signaling in ALS mouse hypothalami.

Dual orexin receptor antagonists (DORAs), such as the US Food 
and Drug Administration–approved drug suvorexant, can acutely 
inhibit orexin signaling (40, 41). We thus administered either su-
vorexant or its vehicle in mouse models equipped with EEG cortical 
electrodes (Fig. 6A). Because mice are nocturnal animals, they are 
at rest/sleep during the day (“light phase”) and active during the 
night (“dark phase”). Acute administration of suvorexant at the on-
set of the light phase was able to rescue sleep alterations in Sod1G86R 
mice. In particular, it normalized wake, REM, and NREM sleep 
similarly to WT untreated animals (WT vehicle versus Sod1G86R 
with suvorexant, P = 0.195; Fig. 6, B to E); similar results were 
obtained in 10-month-old Fus∆NLS/+ mice (Fig. 6, F to I) and 
TDP43Q331K mice (fig. S16, A to D). This effect was observed in both 
male and female mice. Suvorexant did also decrease wake duration, 
increase REM sleep, and decrease NREM sleep in WT mice (Fig. 6, 
B to I).

MCH rescues motor neurons in Sod1G86R mice
We hypothesized that rescuing sleep defects could mitigate disease 
progression in an ALS mouse model. To test this hypothesis, we 
sought to modulate lateral hypothalamus neuropeptide signaling 
chronically. Chronic intracerebroventricular delivery of MCH was 
possible using osmotic mini-pumps, using a similar protocol as in 
Fig. 5A. This protocol only allows MCH delivery for 2 weeks and 

Table 1. Descriptive statistics of the study population of patients with ALS and healthy controls. SEM, standard error of means; BMI, body mass index; 
ALSFRS-R, amyotrophic lateral sclerosis functional rating scale revised; ns, P > 0.05, nonparametric Kruskal-Wallis test. —, not applicable.

Patients with ALS Healthy controls P value

Women (%) 14 (42.4) 10 (31.3) —

Men (%) 19 (57.6) 22 (68.7) —
 BMI (mean ± SEM) 26.38 (±0.78) 26.63 (±0.77) 0.885 (ns)

Age (mean ± SEM) 58.56 (±1.74) 56.22 (±2.81) 0.652 (ns)

ALSFRS-R (mean ± SEM) 40.51 (±0.78) — —
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was limited by the osmotic mini-pump delivery period (Fig. 7A). 
After intracerebroventricular cannulation, Sod1G86R mice were 
longitudinally followed until reaching humane end points for sur-
vival. In these experiments, MCH supplementation did not increase 
the survival of Sod1G86R mice (Fig. 7A). To determine whether chronic 

intracerebroventricular delivery affected motor neuron degeneration, 
we repeated the experiment and euthanized treated mice at 90 days 
of age, i.e., at the end of the osmotic mini-pump delivery period 
(Fig. 7B). MCH treatment allowed the preservation of lumbar mo-
tor neurons at this age (Fig. 7, B and C). These results indicate that 
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modulation of LH sleep regulatory peptides could preserve motor 
neurons, at least in this mouse model.

DISCUSSION
Alterations in sleep are a hallmark of multiple neurodegenerative 
disorders and of normal aging (42), and ALS is not an exception. 
Several previous studies have shown the occurrence of sleep altera-
tions in patients with ALS (23, 43).

However, available studies to date included patients with mani-
fest disease, thus with possibly ongoing progressive respiratory im-
pairment as an effect of disease progression (44). Sleep alterations 
were usually correlated to disease progression in these studies. Thus, 
these studies could not determine whether sleep alterations were 
secondary to disease progression or preexisting motor defects. Our 
current study provides complementary evidence, both in humans 
and in mouse models, that sleep alterations are an early phe-
nomenon in ALS that precedes respiratory impairment and even 
motor symptoms.

To ascertain that sleep alterations are not dependent on other pos-
sible respiratory conditions, we performed two clinical cohort studies 
in different populations. First, we prospectively included early pa-
tients with ALS and defined our exclusion criteria to allow us to rule 
out other sleep disorders that may alter sleep architecture, including 
nocturnal hypercapnia. This ensured that all included participants 
had normal respiratory function. We uncovered alterations in the 
sleep macroarchitecture of patients with ALS, particularly increased 

sleep onset latency, decreased deep sleep (NREM3), and increased 
wake after sleep onset, none of which were self-reported by the par-
ticipants. This first study showed the early occurrence of sleep altera-
tions in patients with manifest disease, and it was impossible to 
exclude that neurological deficits including ongoing motor symp-
toms might have influenced sleep architecture.

To circumvent this limitation, we performed an analogous pro-
spective cohort study in presymptomatic ALS risk gene carriers. We 
observed a similar, yet milder, sleep phenotype in this population of 
presymptomatic carriers. C9ORF72 mutation carriers showed al-
terations in the same direction as patients with ALS for sleep onset 
latency, deep sleep (NREM2 and NREM3), REM sleep, and wake 
after sleep onset. SOD1 mutation gene carriers only showed de-
creased deep sleep and increased wake after sleep onset, consistent 
with a milder clinical picture in SOD1 as compared with C9ORF72 
patients with ALS. The EEG power spectral analysis supports the 
polysomnographic findings of altered sleep architecture with a re-
duced delta band in patients with ALS and gene carriers, which is 
consistent with the reduced deep sleep component and increased or 
tending to increased beta frequencies consistent with an increased 
percentage of wake.

Consistent with the two cohort studies, we observed similar 
sleep alterations in three transgenic mouse models of ALS. In mice 
expressing mutant SOD1, which are characterized by rapid disease 
progression and appearance of symptoms at about 3 months of age, 
we observed increased wake and decreased NREM at 75 days of 
age. At this age, no muscle denervation and no detectable motor 

Table 2. Descriptive statistics of the study population of fALS risk gene carriers. ns, P > 0.05, nonparametric Kruskal-Wallis test. —, not applicable.

fALS gene carriers fALS controls P value

SOD1 C9ORF72 SOD1 C9ORF72

Women (%) 5 (28.5) 9 (75) 14 (73.7) — —

Men (%) 2 (71.5) 3 (25) 5 (26.3) — —

 BMI (mean ± SEM) 27.31 (±1.44) 24.91 (±1.36) 26.06 (±1.59)  0.420 (ns) 0.582 (ns)

Age (mean ± SEM) 47.33 (±6.51) 37.92 (±3.24) 41.84 (±2.67)  0.858 (ns)  0.081 (ns)
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impairment or weight loss are observed. In mice carrying a hetero-
zygous knock-in mutation of Fus or transgenic expression of mutant 
Tdp-43 , both with very slow disease progression and no progression 
to overt paralysis and manifest ALS symptoms, we observed the 

same sleep alterations at 10 months of age. No alterations were ob-
served in Fus knock-in mice at 3 months of age. Our results are 
consistent with recent results in flies, in which the expression of hu-
man TDP-43 profoundly disrupted sleep (45). Similarly, Milioto 
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and collaborators performed neuropixel recordings in lightly anes-
thetized mice expressing poly(GR) from the endogenous C9ORF72 
locus and observed decreased slow oscillations and increased gam-
ma band activity (46). These data do not directly assess sleep pat-
terns in lightly anesthetized animals, and they nevertheless are 
consistent with our findings of increased wake in multiple models of 
ALS. Thus, despite the different species and the vastly different cir-
cadian rhythms and sleep patterns, patients with ALS, ALS risk gene 
carriers, and ALS mouse models showed increased wake and de-
creased NREM sleep compared with their respective controls. The 
only notable species difference was that REM sleep was increased in 
humans and decreased in mice.

Overall, we show here a consistent pattern of ALS-associated 
sleep alterations, which occur before motor impairment and before 

respiratory deficits. Sleep alterations were also observed in other 
neurodegenerative diseases such as Alzheimer’s disease (AD) (47) or 
Parkinson’s disease (PD) and more recently behavioral variants of 
frontotemporal dementia (bvFTD) (48, 49). In their study of the 
day-night rhythm in patients with bvFTD measured by actimetry, 
Filardi et al. (49) found both increased time in bed and increased 
total sleep time. These results are in line with our findings in patients 
with ALS. In contrast with that, patients with AD and patients with 
PD show reductions in REM sleep, which is not observed in early 
patients with ALS, a reduction in the proportion of REM sleep in 
patients with ALS develops as soon as nocturnal hypoventilation 
sets in. Another notable difference between ALS and other neurode-
generative diseases was that, in the absence of respiratory impair-
ment, patients with ALS have been found to report normal subjective 
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sleep quality when using standardized questionnaires. In AD and 
PD, subjective sleep is affected, suggesting that patients with ALS or 
gene carriers are not aware of their sleep alterations or that the sleep 
changes are too subtle to be realized or have been present for a long 
time such that they are not noticed by those affected. It is also pos-
sible that the von Economo neurons in the anterior cingulate 
cortex—which are known to be affected by ALS and play an important 
role in subjective judgment and emotion—compromise the aware-
ness of these alterations (50, 51). The increased wake percentage and 
the sleep fragmentation we observe here are comparable to sleep 
changes observed in normal aging and could be consistent with ac-
celerated aging in patients with ALS (52). Further studies on sleep 
macro- and microarchitecture in patients with ALS are warranted to 
characterize similarities and differences among aging, ALS, and 
other neurodegenerative diseases with respect to sleep alterations.

Our preclinical data suggest that alterations in key LHA signal-
ing underlie ALS-associated sleep alterations. We previously showed 
that the hypothalamus is atrophied early in the disease process of 

ALS, even in presymptomatic risk gene carriers, and that ALS pa-
thology was mostly found in the lateral hypothalamus (10, 14, 53). 
Our recent studies have shown that MCH neurons are lost in ALS 
mouse models and patients, whereas ORX neurons are preserved in 
animal models but lost in patients (20). We further show that MCH 
or ORX neurons do not exhibit major ALS-related pathology until a 
late stage of disease in Sod1G86R mice, suggesting that dysfunction of 
sleep circuits, rather than individual degeneration of their cellular 
components, underlies the observed sleep defect.

MCH and ORX neurons play an important role in sleep control, 
with MCH neurons promoting REM sleep (54, 55) and ORX neu-
rons promoting arousal (56). ORX neurons and MCH neurons are 
generally thought to antagonize each other during the different stages 
of sleep (57, 58). Given that MCH neurons are lost in ALS and 
that ORX neurons remain largely intact, we hypothesized that the 
observed sleep alterations stem from an imbalance in orexinergic 
tone, favoring orexinergic output. Consistent with this hypothesis, 
intracerebroventricular MCH supplementation partially rescued 
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sleep alterations in ALS mice. Notably, MCH’s effect on wild-type 
animals makes this effect non–disease specific. In all studied ALS 
mouse models, ORX antagonist normalized sleep alterations to a 
greater extend. This difference in efficacy between MCH supple-
mentation and ORX antagonist could be due to a more prominent 
role of ORX neurons in sleep modulation. Yet, differences in mode 
of administration (intracerebroventricular cannulation and contin-
uous delivery versus acute oral administration) or pharmacokinet-
ics could also underlie such a difference. MCH treatment also 
demonstrates a beneficial effect on lumbar motor neurons. However, 
no effect on Sod1G86R mouse model survival was observed, possibly 
because of technical limitations and the limited pump bioavailabili-
ty of MCH or possible receptor desensitization. Futher experiments 
would need to determine the molecular and cellular mechanism of 
MCH action in ALS. We also noticed that in Sod1G86R (90 days old) 
and Fus∆NLS/+ (4 months) mice, hypothalamic gene expression of 
Junb, Sgk1, Foxo1, and Sirt1 were altered, consistent with profound 
changes within the neurons’ signaling.

Our preclinical study suggests that LH neuropeptides play a crit-
ical role in early sleep alterations; however, we do not show that 
these alterations originate specifically in ORX or MCH neurons, nor 
do we rule out the involvement of other cell types or structures. Re-
cent studies have observed the involvement of sleep-controlling 
long pathways in ALS, including cholinergic pathways (59, 60), nor-
adrenaline neurons (61), serotonin neurons (62), or more indirectly 
glymphatic dysfunction (63). Future work should perform cell-
specific interventions to characterize the circuit dysfunctions and 
their proximal causes.

This translational study has several limitations. The human study 
includes a limited number of patients with ALS from a single center, 
and the gene-carrier cohort is restricted to a small population in 
Germany, thus implying a possible selection bias. In our preclinical 
mouse study, key limitations are the use of acute orexin antagonist 
administration, the impossibility of performing motor function as-
sessment, and the lack of direct measurements or MCH and orexin 
concentrations in the brain. Although MCH supplementation shows 
effects on lumbar motoneurons, its application as a translational ap-
proach remains challenging at this stage.

In our study, we provide a characterization of the possible causes 
and consequences of sleep changes in ALS that precede motor 
symptoms. These changes in sleep are initially clinically subtle, so 
that people before motor onset and even manifest patients do not 
subjectively notice these sleep changes. Our results suggest that 
these sleep changes are an expression of hypothalamic dysregula-
tion, which also manifests itself in other changes in patients with 
ALS, such as altered energy supply, which also precedes the motor 
manifestation phase of the disease given that patients already show 
a drop in body mass index years before onset (64, 65). We therefore 
consider the sleep changes to be part of a prodromal phase that pre-
cedes the motor manifestation phase of ALS (14, 63, 66) that was not 
identified in the neuroanatomical studies by Brettschneider et al. 
(67) and Braak et al. (68). In addition, it has already been shown that 
functions classically associated with sleep—cognitive functions 
and memory—are altered in the preclinical phase of ALS, so far 
without establishing the link to sleep changes (69, 70). This would 
be consistent with the observed correlation of a higher proportion 
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15 days after implantation. Animals were euthanized when reaching the humane end point, which was determined by the paralysis of the hindlimbs. (B) Representative 
confocal images of ChAT immunostaining in the spinal cords of (L1 to L6) Sod1G86R and WT littermates with either vehicle or MCH supplementation at 90 days of age. Scale 
bar, 100 μm. (C) Motor neuron counts in Sod1G86R or WT littermates treated with either vehicle or MCH. Mice in (B) and (C) were euthanized at the end of the delivery pe-
riod by the osmotic mini-pumps (90 days of age). WT vehicle: n = 17; 10 females and 7 males; WT MCH: n = 19; 11 females and 8 males; Sod1G86R vehicle: n = 22; 12 females 
and 10 males; Sod1G86R MCH: n = 19; 13 females and 6 males. Males are shown in green and females in purple. ***P < 0.001, Two-way ANOVA with one-step FDR-BKY 
correction; genotype effect: Sod1G86R, P < 0.0001; sex effect: WT, P = 0.6241; Sod1G86R, P = 0.9925. Data are presented as median and interquartile ranges. Corrected 
P values are shown.
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of wakefulness and higher sleep fragmentation with reduced cogni-
tive performance and a selective impairment of verbal fluency in 
presymptomatic risk gene carriers (71). It is plausible that sleep al-
terations occurring several years before the onset of motor symp-
toms could contribute to motor deficits or disease progression in 
patients with ALS. Our observation of the protection of motor neu-
rons through chronic administration of MCH in rodents suggests a 
possible detrimental role of sleep-related defects in the progression 
of motor symptoms, because MCH is involved in the regulation of 
sleep and sleep stages. Further preclinical and clinical research is 
warranted to investigate the impact of defects in sleep and sleep 
regulatory neuropeptides on cognitive deficits, weight loss, or motor 
symptom progression associated with ALS.

MATERIALS AND METHODS
Study design
The aims of this study were (i) to characterize sleep stage alterations 
in patients with ALS and presymptomatic risk gene carriers and (ii) 
to investigate sleep deficits and the role of hypothalamic signaling 
disruptions in mouse models. For human studies, polysomnogra-
phy was used as the principal tool to analyze sleep macroarchitec-
ture and the wake-sleep distribution in these cohorts. The study was 
designed as a prospective case-control investigation, focusing on 
individuals without respiratory symptoms.

The cohort of patients with ALS was approved by the Ethics 
Committee of the University of Ulm (reference 391/18) and the 
study in the presymptomatic carriers, which was also approved by 
the Ethics Committee of the University of Ulm (reference 68/19), in 
compliance with the ethical standards of the current version of the 
revised Declaration of Helsinki. In the context of the study, all par-
ticipants were informed about the content, procedure, and objective 
of the study. Furthermore, they were granted sufficient time to re-
consider their participation. All participants gave written informed 
consent before enrollment. The study adhered to the Strengthening 
the Reporting of Observational Studies in Epidemiology (STROBE) 
guidelines for observational research throughout implementation 
and analysis (72). Our sample size in humans was based on the de-
signs of previous polysomnography studies detailed below.

For mouse studies, EEG analysis was used to investigate sleep 
disturbances in three ALS mouse models (Sod1G86R, FusΔNLS/+, and 
TDP43Q331K). Per os administration of a dual-orexin receptor an-
tagonist and intracerebroventricular delivery of MCH over 15-day 
treatment were used to recover sleep deficits.

Sample size was estimated on the basis of former studies in ro-
dents (14). All experiments were performed in strict compliance 
with directive 2010/63/EU and regulation (EU) 2019/1010. The proj-
ects (2021092415348513 and 2019040815594294) were reviewed 
and approved by the Ethics Committee of the University of Strasbourg 
and the French Ministry of Higher Education, Research and Innova-
tion (decree no. 2013-118, 1 February 2013). Animal care occurred in 
accordance with the Guide for the Care and Use of Laboratory Animals. 
Strict compliance with Animal Research: Reporting of In Vivo Ex-
periments (ARRIVE) 2.0 guidelines has been ensured. All experi-
ments were analyzed blindly for different treatment and groups.

Patients/participants
Patients with ALS were recruited from the inpatient and outpatient 
clinics of the Neurologic Department of the University Hospital of 

Ulm, Germany, from October 2018 to January 2022. The inclusion 
criteria for patients with ALS included a diagnosis of definite ALS 
based on the revised El Escorial criteria (73). The control partici-
pants were recruited from the general population and from patients 
in the department of neurology during the same period. They were 
matched with the patients with ALS on the basis of age, sex, and 
geographical location; the requirement for this group was the exclu-
sion of neurodegenerative diseases. All individuals in the control 
group were unrelated to ALS or fALS. Presymptomatic carriers of 
fALS genes were recruited through the study center of the Neuro-
logical University Hospital, through which first-degree relatives of 
confirmed familial patients with ALS received longitudinal follow-
up and counseling in the period from October 2019 to November 2022. 
In accordance with the study protocol, the scheduled investiga-
tions were conducted on two consecutive days, with polysomnog-
raphy performed on the intervening night. A follow-up examination 
was not included in the study. A report on age and sex for all study 
participants can be found in the Supplementary Materials. Controls 
were recruited from the general population at the neurology clinic 
and matched to patients with ALS on the basis of age, sex, and geo-
graphical location; the requirement for this group was the exclusion 
of neurodegenerative diseases. All individuals in the control group 
were unrelated to ALS or fALS.

The study in the cohort of patients with ALS was approved by the 
Ethics Committee of the University of Ulm (reference 391/18) and 
the study in the presymptomatic carriers, which was also approved 
by the Ethics Committee of the University of Ulm (reference 68/19), 
in compliance with the ethical standards of the current version of 
the revised Declaration of Helsinki. All participants gave informed 
consent before enrollment.

Medical history was documented. For patients with ALS, the 
ALSFRS-R and characteristics of disease progression were docu-
mented (site of first paresis/atrophy and date of onset). All partici-
pants also completed validated daytime sleepiness and sleep quality 
questionnaires, namely, the Epworth Sleepiness Scale (ESS) (74) and 
the Pittsburgh Sleep Quality Index (PSQI) (75).

Patients’ inclusion process
The exclusion criteria were designed to eliminate all potential factors 
that could otherwise alter sleep architecture. Specifically, we aimed 
to exclude respiratory insufficiency in patients with ALS. Although 
respiratory insufficiency develops at varying points in the progres-
sion of ALS, depending on the individual course, it is typically pres-
ent in advanced stages and is known to affect sleep architecture. For 
this reason, patients with ALS underwent transcutaneous capnome-
try in addition to polysomnography. Furthermore, participants with 
an apnea-hypopnea index (AHI) above 20 per hour or a periodic 
limb movement index (PLMSI) above 50 per hour were excluded 
from the analysis. Detailed inclusion and exclusion criteria are pro-
vided in tables S1 and S2.

A power analysis to determine group size was not feasible because 
of the lack of relevant data on polysomnography in patients with ALS, 
particularly in asymptomatic risk gene carriers, at the time of the study 
design. Instead, we based our approach on the designs of previous 
polysomnography studies (76–78). The study by Puligheddu et al. (76) 
was similarly designed as a case-control study and demonstrated sig-
nificant differences with group sizes of 28 or 29 participants per group.

We anticipated a 30% dropout rate in the first cohort because of 
the stringent exclusion criteria. To ensure 30 participants per group 
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for analysis, a target enrollment of 50 participants per group was 
established. For the second cohort, it was hypothesized that partici-
pants would be divided into two roughly equal groups: gene car-
riers and family controls based on genotyping results. Because 
no respiratory insufficiency was expected in this cohort, a drop-
out rate of 20% was assumed, leading to a planned cohort size of 
70 participants.

On the basis of findings from previous studies (76–78), which 
highlighted differences in wakefulness and NREM stage distribu-
tion, we established the proportion of REM and NREM sleep (in-
cluding NREM substage distribution) and wakefulness after sleep 
onset as primary end points for polysomnography analysis. Other 
polysomnographic parameters, along with the ESS and PSQI ques-
tionnaire scores, were defined as exploratory end points.

Blinding was not feasible in the cohort of patients with ALS and 
healthy controls. The study on the presymptomatic risk gene carri-
ers was blinded, in that the participants were family members of a 
fALS case and were therefore informed about their risk of being 
gene carriers. The study on presymptomatic risk gene carriers was 
conducted in a blinded manner. These individuals were informed 
about their risk of being gene carriers, yet neither they nor the study 
personnel were aware of the result of the genetic screening at the 
time of the study. Randomization was not feasible in this study de-
sign for either cohort. Outliers, defined as values exceeding three 
standard deviations from the mean, were prespecified for exclusion 
from the analysis. The study adhered to the STROBE guidelines for 
observational research throughout implementation and analysis.

Neuropsychological assessment
Cognition was measured with the German version of the Edinburgh 
Cognitive and Behavioral ALS Screen (ECAS) (79–81) by trained 
psychologists. The ECAS addresses cognitive domains of language, 
verbal fluency, executive functions (ALS-specific functions), and 
memory and visuospatial functions (ALS nonspecific functions). 
Age- and education-adjusted cutoffs were used (Loose). Behavioral 
changes were assessed by patients’ caregiver/first-degree relative in-
terviews on disinhibition, apathy, loss of sympathy/empathy, perse-
verative/stereotyped behavior, hyperorality/altered eating behavior, 
and psychotic symptoms.

Electroencephalography in patients and controls
All participants, patients with ALS, healthy controls, fALS risk gene 
carriers, and fALS controls underwent a single night of full poly-
somnography, involving the monitoring of various physiological 
parameters, including electroencephalography (EEG), surface elec-
tromyogram (EMG), electrooculogram, respiratory effort and flow, 
pulse, and oxygen saturation. All measurements were conducted ac-
cording to the American Academy of Sleep Medicine (AASM) 
guidelines (82, 83). The EEG electrodes were placed according to the 
international 10-20 system, and the following electrodes were used 
in each participant: midline frontal (Fz), C3, C4, Cz (midline cen-
tral), P3, P4, midline (Pz), O1, O2, A1, and A2. The sampling rate 
was 512 Hz in each case. The individually different point in time at 
which the participant turned off the lights and tried to sleep was 
marked with a “lights off ” marker in each recording.

Sleep analyses in patients and participants
Analyses were performed using available Python packages (only 
compatible with Python 3.10 or newer, Python Software Foundation, 

Python Language Reference, version 3.12; available at www.python.
org) relying on the MNE package (84). EEGs were first deidentified 
using the open-source Prerau Lab EDF De-identification Tool (ver-
sion 1.0; 2023) in Python (Prerau Lab EDF de-identification tool; 
https://sleepeeg.org/edf-de-identification-tool). De-identified EEGs 
were then notch-filtered to remove the 50-Hz powerline. Indepen-
dent component analysis was performed to remove all remaining 
artifacts from the signal (85–89). Analyses were limited to both sen-
sorimotor cortices (C3 and C4), which are known to be impaired at 
the onset of the disease, as well as nearby interhemispheric sulci (Fz, 
Cz, and Pz). Sleep staging was performed on a 6-hour window with 
30-s epochs, starting when lights were turned off, using YASA deep 
learning algorithm (v0.6.4) (27) and the spectral analysis. Time in 
bed and total sleep time were calculated over the whole recording 
period. The automated sleep staging, hypnograms, and spectrograms 
were performed using Welch’s method (90). Sleep pressure was de-
termined using the area under the curve (AUC) of delta power (0.5 
to 4 Hz) of the first hour of the 6-hour window. Simpson’s rule was 
used to compute the AUC. REM efficiency was computed by divid-
ing theta power (4 to 8 Hz) by delta power (0.5 to 4 Hz), specifically 
during REM epochs. Sleep staging and analysis were performed fol-
lowing the AASM’s guidelines (82, 83).

EEG analysis in mice
We used NeuroScore software for sleep and seizure analysis 3.4 
(Data Science International Inc., St. Paul, MN, USA) to analyze and 
score the EEG, EMG, and activity count of the animals at baseline, 
with the vehicle and with suvorexant or MCH. For both vehicle and 
suvorexant or MCH, the hour after the gavage was removed from 
the recording to ensure that minimal stress effect would be seen on 
the recording due to the gavage.

EEG and EMG signals, as well as activity counts, were used to 
score sleep/wake behavioral states using the NeuroScore software 
for sleep and seizure analysis 3.4 (Data Science International Inc., 
St. Paul, MN, USA) Rodent Sleep automated scoring method. We 
used 5-s epochs for both the EEG and EMG. Then, the automated 
scoring method classified each epoch into one of the following be-
havioral states: (0) wake (low-voltage fast EEG, high-voltage EMG, 
with frequent activity counts); (1) NREM1 (NREM1 sleep: spin-
dling and high-voltage EEG with slow waves, low-voltage EMG and 
no activity counts); (2) NREM2 (NREM2 sleep: spindling and high-
voltage EEG with slow waves, very low voltage EMG) and no activ-
ity counts; (4) REM (REM sleep: low-voltage and fast EEG combined 
with very low-voltage EMG, with occasional short-duration, large-
amplitude EMG activity due to muscle twitches and sporadic short-
duration activity counts).

The activity count was used as a double check for false-positive 
EMG activity. Wake, REM, and NREM were analyzed as a percent-
age over the 24-hour recording period, with epochs of 5 s.

Data were extracted from NeuroScore and used in combination 
with available Python packages (Python Software Foundation, Py-
thon Language Reference, version 3.12; available at www.python.
org) to further process the data. YASA toolbox (27) was used to gen-
erate hypnograms and perform the spectral analysis. Hypnograms 
were generated following the AASM’s guidelines (82, 83).

Statistical analyses
G*Power software (version 3.1.9.6 for macOS, 2023) was used to de-
termine the sufficient sample size needed to reach significant statistical 

http://www.python.org
http://www.python.org
https://sleepeeg.org/edf-de-identification-tool
http://www.python.org
http://www.python.org


Guillot et al., Sci. Transl. Med. 17, eadm7580 (2025)     29 January 2025

S c i e n c e  T r a n s l at i o n a l  M e d i c i n e  |  R e s e a r c h  A r t i c l e

13 of 15

power using an a priori Student’s t test coupled with a linear bivariate 
regression (91, 92). Before any statistical analysis, normality and ho-
moscedasticity were both tested, respectively, with Shapiro-Wilk test 
(93) and Bartlett’s test (94).

Statistical analysis of two groups was performed using an inde-
pendent Student’s t test, from Pingouin (95), using the Welch t test 
correction, from SciPy, as recommended by Zimmerman (96), and 
with a large Cauchy scale factor due to the considerate effect size 
(97). When data were heteroscedastic and normality was not met, a 
Mann-Whitney U test was performed using SciPy (98).

Follow-up analysis was performed using paired t test from SciPy (98) 
or a Wilcoxon–Mann-Whitney rank-sum test from statsmodels (99) 
when normality was not met. P values were then adjusted using false 
discovery rate Benjamini-Krieger-Yekutieli (FDR-BKY) correction.

For statistical analysis of three or four groups, a one-way analysis 
of variance (ANOVA) or two-way ANOVA was performed using 
Pingouin (95) toolbox. For both one-way ANOVA and two-way 
ANOVA, a one-step Bonferroni correction was applied. When data 
were heteroscedastic, and normality was not met, a Kruskal-Wallis 
from SciPy (98) followed by Dunn’s multiple comparison test with 
FDR-BKY correction was performed using scikit-posthocs (100) in-
stead of a one-way ANOVA. For the two-way ANOVA, a general-
ized least squares model was fitted using statsmodels (99), followed 
by Dunn’s multiple comparison and FDR-BKY correction using 
scikit-posthocs (100). We evaluated whether a sex-specific effect was 
present in all our analyses by performing a two-way ANOVA with a 
one-step Bonferroni correction for both sexes. Sex was self-reported 
in both ALS cohorts.

For survival, a Kaplan-Meier model was fitted using lifelines 
(101), and a log-rank test with Wilcoxon weighting was performed 
using SciPy (98). Simpson’s rule and Spearman’s correlation coeffi-
cient, from SciPy (98), were used to determine the AUC and cor-
relations on nonparametric data. PCAs were performed using 
scikit-learn package (102).

Data are presented as violin plots with all points and expressed as 
average ± interquartile. Plots were generated using Seaborn and Mat-
plotlib packages (103). Results were deemed significant when their 
adjusted P < 0.05. Here, only corrected P values are shown.

Supplementary Materials
The PDF file includes:
Materials and Methods
Figs. S1 to S16
Tables S1 and S2

Other Supplementary Material for this manuscript includes the following:
Data file S1
MDAR Reproducibility Checklist
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