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Purpose of review

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease targeting upper and lower motor
neurons, inexorably leading to an early death. Defects in energy metabolism have been associated with
ALS, including weight loss, increased energy expenditure, decreased body fat mass and increased use of
lipid nutrients at the expense of carbohydrates. We review here recent findings on impaired energy
metabolism in ALS, and its clinical importance.

Recent findings

Hypothalamic atrophy, as well as alterations in hypothalamic peptides controlling energy metabolism, have
been associated with metabolic derangements. Recent studies showed that mutations causing familial ALS
impact various metabolic pathways, in particular mitochondrial function, and lipid and carbohydrate
metabolism, which could underlie these metabolic defects in patients. Importantly, slowing weight loss,
through high caloric diets, is a promising therapeutic strategy, and early clinical trials indicated that it
might improve survival in at least a subset of patients. More research is needed to improve these
therapeutic strategies, define pharmacological options, and refine the population of ALS patients that would
benefit from these approaches.

Summary

Dysfunctional energy homeostasis is a major feature of ALS clinical picture and emerges as a potential
therapeutic target.
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INTRODUCTION

Until recently, amyotrophic lateral sclerosis (ALS)
was considered a disease restricted to the motor
system. The simultaneous degeneration of upper
motor neurons, in the motor cortex, and of lower
motor neurons, in the brainstem and spinal cord,
appeared sufficient to explain the clinical phenotype
of patients. Recent years have however demonstrated
that ALS signs and symptoms are not restricted to the
motor system, but also involve cognitive and meta-
bolic alterations. This idea is consistent with the
notion that ALS is part of a continuum with fronto-
temporal dementia (FTD) [1,2].

More than two decades ago, Couratier et al.
observed that malnutrition correlated with worsened
survival of ALS patients [3]. These observations,
underpinned by studies in animal models [4],
highlighted the alteration of systemic energy homeo-
stasis in ALS patients. In recent years, an important
body of evidence documented the clinical impor-
tance of the dysfunctional energy homeostasis
observed in ALS. Anatomical and cellular substrates
rs Kluwer Health, Inc. All rights rese
for these mechanisms are still poorly understood.
Here, we review details of these emerging concepts
in ALS.
EVIDENCE OF SYSTEMIC ENERGY
HOMEOSTASIS ABNORMALITIES IN
AMYOTROPHIC LATERAL SCLEROSIS

The occurrence of premorbid weight loss in ALS is
the most evident symptom of defective energy
rved. www.co-neurology.com
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KEY POINTS

� Weight loss is a major symptom of ALS, occurring
early, independently of dysphagia and not fully
explained by denervation-induced muscle atrophy.

� Causes of weight loss are incompletely characterized
and include alterations in metabolic fluxes in various
tissues including skeletal muscle.

� Hypothalamic atrophy, as well as alterations in
hypothalamic peptides controlling energy metabolism,
have been associated with metabolic derangements
in ALS.

� High caloric diet is a promising therapeutic strategy,
with preliminary evidence of efficacy in fast
progressing ALS patients.

Motor neuron disease
metabolism. ALS patients usually display normal to
low body mass index at onset [5], and typically lose
weight and body fat with the progression of the
disease [3]. However, weight loss is not observed
in all ALS patients, affecting between one and
two-thirds of individuals [6

&

,7,8]. Consistent with
the importance of weight loss in the disease process,
the risk of developing ALS has been repeatedly
shown to increase with lower premorbid body fat
[9–11] and is also correlated with lower levels of
leptin, an adipocyte-derived hormone reflecting
adipose energy stores [12]. The process of weight
loss in ALS appears to precede the onset of motor
symptoms as presymptomatic ALS patients begin
losing weight several years before the disease onset
and diagnosis [13]. The systemic metabolic
impairment in ALS remains incompletely character-
ized, and several studies have documented paradox-
ical glucose intolerance [14], insulin resistance [15]
and, at least in some studies, increased circulating
lipids [16,17] as well as redistribution of adipose
tissue towards more visceral fat [18].

Weight loss appears to affect patients with spi-
nal and bulbar onset of symptoms [6

&

], and, impor-
tantly (see later) occurs also in a significant
proportion of patients who do not have the problem
of dysphagia [6

&

,19]. Weight loss is also not fully
explained by denervation-induced muscle atrophy.
This reinforces weight loss is not a mere conse-
quence of disease progression but rather an initial
symptom. Furthermore, the weight alteration (as
low as 5% of initial body weight) is adversely asso-
ciated with the survival of ALS patients either in the
total ALS population [6

&

,20–22] or after invasive
ventilation [23]. This deleterious effect of weight
change is observed in various genetic backgrounds,
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either European or Asian populations [19,24], which 
makes it an important prognostic factor [6&

].
MECHANISMS OF SYSTEMIC ENERGY 
METABOLISM IMPAIRMENT

What causes weight loss in ALS patients? Weight 
loss could be caused either by increased energy 
expenditure or decreased energy intake [4] (Fig. 1). 
Interestingly, premorbid physical activity, that 
increases energy expenditure, has been repeatedly 
associated with ALS risk [25,26].

Besides, a large proportion of ALS patients display 
higher than predicted resting energy expenditure 
before any intervention with ventilatory support 
[27,28]. In 2021, it is accepted that hypermetabolism 
is observed in ALS patients [29] and mouse models 
[30,31], and is correlated with greater functional 
decline [32,33]. On a theoretical note, however, it is 
important to realize that the concept of hypermetab-
olism has been discussed for many years and has to be 
considered with caution, particularly in animal mod-
els. The relationship between energy expenditure and 
body weight has to be used with particular caution 
[34]. The traditional normalisation by body weight in 
small mammals is questionable, whereas the Harris 
and Benedict equation, used in humans, considers 
several physiological parameters and describes more 
accurately energy expenditure [35,36]. A re-evaluation 
of hypermetabolism in ALS is therefore necessary.

Decreased energy intake is a mechanism 
observed during the progression of ALS symptoms, 
which ultimately causes difficulties in eating and 
changes in dietary habits, resulting from dysphagia 
(Fig. 1). However, more recent studies converge to 
show that weight alteration occurs in patients even 
in the absence of early dysphagia [6

&

,19]. Studies 
quantitating the appetite of ALS patients using 
appetite questionnaires demonstrated that ALS 
patients display loss of appetite [37], which is unre-
lated to bulbar symptoms and dysphagia [38]. Most 
importantly, this loss of appetite worsens with dis-
ease progression and is correlated with loss of weight 
and fat mass [38,39]. These changes in eating behav-
iour are related to cognitive defects and distinguish 
between patients with pure ALS and those with 
cognitive impairment [40]. It cannot be excluded 
that neuromuscular respiratory failure could also in 
itself, possibly through CO2 retention or hypoxia, 
cause loss of appetite [41].

Weight and appetite are controlled centrally 
and these pathways are affected in ALS [42,43

&

]. 
The key brain region in the process is the hypothal-
amus which finely controls the energy homeostasis 
[44] (Fig. 1). Arcuate nucleus neurons such as pro-
Volume 34 � Number 00 � Month 2021
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FIGURE 1. Mechanisms of weight loss in ALS patients. ALS, amyotrophic lateral sclerosis.

Energy homeostasis in amyotrophic lateral sclerosis Guillot et al.
opiomelanocortin (POMC)- and agouti-related pep-
tide (AgRP)-expressing cells are the first-order neu-
rons responsive to energy status, and respectively
decrease or increase food intake. Interestingly several
studies showed that the hypothalamus 
accumulates TDP-43 lesions [45,46

&&

], especially the
lateral hypo-thalamic area [46

&&

] (Fig. 2). Indeed,
the hypothala-mus appears atrophied, as measured
using Magnetic resonance imaging [47], and
hypothalamic connec-tivity is altered in both
patients and ALS mice [48

&&

]. Functional evidence
linking hypothalamic neuro-modulators to
weight loss remains scarce. Indirect evidence
pointed out that the hypothalamus of ALS patients
does not adequately respond to food intake
inducing cues. ALS patients exposed to the antidia-
betic drug, pioglitazone, did not gain weight, whereas
this drug acts selectively on hypothalamic POMC

neurons to increase body weight. Consistently,

1350-7540 Copyright � 2021 Wolters Kluwer Health, Inc. All rights rese
pioglitazone did not increase food intake in ALS mice
[49]. Such blunted pioglitazone response is likely due
to a defect in melanocortinergic neurons, as POMC
expression is decreased and AgRP expression is
increased in ALS mice [49]. Independent studies
showed increased levels of neuropeptide Y, a neuro-
peptide co-expressed with AgRP, in ALS patients [15].

The hypothalamic involvement in ALS remains,
however, to be disentangled, and a recent study
showed a decreased orexin expression in lateral
hypothalamus neurons, that could contribute to
weight loss [46

&&

] (Fig. 2). Further functional inves-
tigation of these hypothalamic neuronal subtypes in
ALS weight loss is warranted [50]. However, ablation
of leptin, an adipocyte-derived hormone acting on
the hypothalamus to induce satiety, in mutant
mice expressing the SOD1 ALS-related mutation,
increased lifespan and improved muscle function
rved. www.co-neurology.com 3
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FIGURE 2. Systemic metabolic alterations in ALS patients and models. ALS, amyotrophic lateral sclerosis.

Motor neuron disease
[31], indirectly suggesting the relevance of the hypo-
thalamus to ALS progression.
[61,66,67].
ABNORMAL METABOLIC FLUXES IN
AMYOTROPHIC LATERAL SCLEROSIS

Abnormal usage of nutrients might underlie weight
loss. In the skeletal muscle of a mouse model express-
ing mutant SOD1, Palamiuc et al. showed that lipid
metabolism was favoured over glucose at an early
stage of the disease onset (Fig. 2). Consistently,
mutant SOD1 mice showed an increased mitochon-
drial b-oxidation, indicative of increased lipid catab-
olism [51

&

]. Early in the disease progression a
decreased respiratory exchange ratio [30,51

&

], altered
gene expression [30,51

&

,52] and an increased oxida-
tive capacity [51

&

] were described. The increased lipid
catabolism is conversely associated with decreased
glucose oxidation. Thus, mutant SOD1 mice develop
progressive glucose intolerance as a consequence of
reduced usage of muscle glucose [51

&

,52,53]. Inter-
estingly, SOD1 is not the only ALS related gene whose
manipulation in transgenic animals modifies the
usage of metabolic fuels. The overexpression of
mutant A315T TDP-43 leads to increased adipose
tissue and abnormal muscle response to insulin
[54], whereas conditional knock-out of TDP-43 dra-
matically increased the usage of lipids. The latter
results in loss of adipose tissue and death within days
4 www.co-neurology.com
[55]. Such alterations in fuel usage may be relevant to
ALS patients since a similar increase in b-oxidation
was observed in patients-derived primary myotubes
[56

&&

] and in patient-derived fibroblasts [57]. 
Further-more, these altered metabolic fluxes would
be con-sistent with the trend of ALS patients to
develop paradoxical insulin resistance as well as
with the protective effects of increased blood
lipids in ALS [17,58]. Moreover, cells carrying the
C9ORF72 muta-tion also exhibited substrate-
specific alterations of bioenergetic substrates, in
particular for pyruvate and glycogen [59]. These
altered metabolic fluxes could constitute a
compensatory response to abnormal
mitochondrial function [30,51

&

]. Multiple pieces of
evidence point to mitochondrial damage in response
to mutant proteins associated with ALS, such as
SOD1, TDP-43 and Fused in sarcoma (FUS) [60–62],
particularly in muscles and axons. These impaired
mitochondria in muscles are located at the neuro-
muscular junctions [63–65] which suggest that they
participate in neuromuscular junction demise
HOW COULD ALTERED METABOLIC
FLUXES PARTICIPATE IN AMYOTROPHIC
LATERAL SCLEROSIS?

Pharmacological evidence suggests that the metabolic

shift towards lipid use participates in disease
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Energy homeostasis in amyotrophic lateral sclerosis Guillot et al.
progression. Dichloroacetate, an inhibitor of pyruvate 
dehydrogenase kinase, improves mitochondrial func-
tions in mutant SOD1 mice resulting in a slower weight 
loss [52]. Furthermore, ranolazine, a compound known 
to decrease b-oxidation was able to temporarily restore 
metabolic homeostasis, although it did not improve 
survival [51

&

]. Strikingly, downregulating the key 
enzyme responsible for fatty acid import into mito-
chondria, carnithine palmitoyltransferase 1, was able 
to slow down disease progression [68

&&

].
Genetic interventions aiming at genetically 

boosting mitochondrial biogenesis, through over-
expression of peroxisome proliferator-activated 
receptor-gamma coactivator 1-alpha (PGC-1a), 
was able to prevent muscle atrophy and improve 
mitochondrial function by restoration of muscle 
signalling and ATP consumption [69]. Conversely, 
knocking out a major muscle isoform of PGC-1a was 
detrimental to male mutant SOD1 mice [70]. The 
effects of PGC-1a overexpression appear however 
discordant across studies, and, more recent evidence 
suggests that overexpressing PGC-1a would not pre-
vent or delay the onset of the disease [30,71].

An alternative strategy to manipulate metabolic 
fluxes could be to favour glucose usage. A recent 
study demonstrated that increased expression of 
GLUT-3 (glucose transporter 3) and phosphofructo-
kinase in TDP-43 fly models was neuroprotective in 
the nervous system, but not in muscles [72]. Similar 
results were obtained in fly and cell models of 
C9ORF72 ALS through the improvement of insulin 
signalling [73]. This indirectly suggests that 
improvement of glucose metabolism could modify 
disease progression. Such therapeutic strategies aim-
ing at reorientating energy metabolism to glucose 
usage have however not yet been translated through 
the clinic.
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DIETARY MODULATION OF METABOLISM 
IS EFFICIENT IN MODELS AND PATIENTS

Dietary improvement of patients could also 
potently modify energy metabolism (Fig. 1). In 
2004, we reported that a high-fat diet could improve 
metabolic status, prevent the loss of motor neurons, 
and extend survival in mutant SOD1 mice [30]. 
More recently, similar results were established in 
TDP-43 mutant mice using a high-fat diet to show 
reduced oxidative stress and improved presymptom-
atic state [74]. It was shown recently however that 
very high-fat content was associated with poorer

outcomes in mutant SOD1 mice [68
&&

], suggesting a
bell-shaped curve in the protection mediated by
high caloric intake in mouse models.

The first clinical trial was performed by Wills and 
collaborators, which observed improved survival in
1350-7540 Copyright � 2021 Wolters Kluwer Health, Inc. All rights rese
gastrostomised patients fed with high caloric diets as
compared with an isocaloric diet [75,76]. Lately, th
lipid supplementation in LIPCAL-ALS trial observe
a protective effect of dietary lipid supplementatio
on weight loss and survival of fast progressing AL
patients [77

&&

], although the trial did not meet it
primary endpoint on the total ALS population. Thi
dietary intervention decreased circulating neurofila
ment levels, consistent with a neuroprotective actio
[78]. Further studies, in particular with prespecifica
tion of the analysis of fast-progressing patients, ar
warranted to confirm these initial studies. Othe
dietary interventions could prove useful in ALS bu
have not reached the stage of clinical studies. Keton
bodies or ketogenic diets have shown potential i
mutant SOD1 mice [79] and fly models of TDP-43 AL
[80], and remain to be further tested.

Several studies have suggested that intake o
polyunsaturated fatty acids could protect agains
ALS [81,82]. However, no clinical trial has yet teste
whether there could be differences in efficac
depending on the degree of unsaturation.
HOW ARE AMYOTROPHIC LATERAL
SCLEROSIS-RELATED MUTATIONS
INTERFERING WITH ENERGY METABOLISM?

ALS is a disease with a prominent genetic contribu
tion, with 4 major genes (SOD1, C9ORF72, TARDB
encoding TDP-43 and FUS). How these geneti
mutations cause or contribute to metabolic defect
remain incompletely characterized. Mutations i
SOD1 were the first genetic causes of ALS identified
and most experimental studies still use transgeni
mice expressing mutant forms of SOD1. How
mutant SOD1s might precipitate weight loss an
shift energy metabolism remains unclear. Severa
lines of evidence suggest that SOD1 mutant protein
might affect mitochondrial function, through inter
action with major mitochondrial proteins such a
VDAC1 [83] or Bcl-2 [84], leading to oxidative stres
damage to mitochondrial RNA [85] and mitochon
drial damage [86–90]. Further work should dissec
the relative contributions of these different mecha
nisms, and their respective contributions in specifi
cell types.

As for SOD1, mutations in TARDBP, encodin
TDP-43 appear to have important effects on mito
chondrial physiology, that could possibly underli
dysfunction in energy homeostasis. Indeed, aggre
gation of TDP-43 has been reported to sequeste
several key mRNAs which encode nuclear-encode
mitochondrial proteins [91]. A fraction of TDP-4
enters the mitochondria and affects mitochondria
function through different mechanisms including
rved. www.co-neurology.com 5
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alterations in mitochondrial transcript metabolism,
activation of the mitochondrial transition pore
or the mitochondrial unfolded protein response
[92–94]. TDP-43 might also have effects on energy
metabolism beyond mitochondria and has been
shown to directly regulate insulin secretion
(Fig. 2) through regulation of a circular RNA
encoded by the insulin gene [95

&

] and through
regulation of the expression of the calcium channel
CaV1.2 in pancreatic b-cells [96

&

].
Like TDP-43, FUS is an RNA binding protein

involved in multiple aspects of RNA metabolism
in both ALS and ALS-FTD. FUS has been reported
to regulate the stress response and mitochondrial
functions, such as transport and autophagy pro-
cesses [97]. FUS modulates mitochondrial oxidative
stress in muscles by inhibiting the action of the heat
shock protein 60 [97,98]. The FUS gene appears to
encode for a second polypeptide, called altFUS, that
is mitochondrially targeted and required for the
toxic effects in FUS mutants [99].

Expansion of a hexanucleotide repeat in the
C9ORF72 gene is associated with both ALS and
ALS-FTD and leads to motor neuron toxicity
through multiple mechanisms, including haploin-
sufficiency of the C9ORF72 gene product and toxicity
of RAN-translated di-peptide protein repeats.
Although defective mitochondria have been found
in both mutant models and ALS and ALS-FTD
patients carrying the C9ORF72 mutation [100,101],
knowledge about those mitochondrial alterations
are sparse [102]. It has been shown that the
C9ORF72 protein might be involved in stabilizing
mitochondrial complex I [103]. It remains however
unclear how the hexanucleotide repeat expansion
leads to mitochondrial defects.

Beyond familial ALS, a large proportion of ALS
casesdo nothave familialhistory.ACSL5 wasrecently
highlighted in a genome-wide association study as a
genetic factor increasing ALS risk. ACLS5 is known to
convert free long-chain fatty acids into fatty-acid-
coenzyme A, thereby, playing a key role in lipid
biosynthesis and fatty acids degradation [61]. Over-
expression of ACSL5 was associated with rapid weight
loss, as has GPX3, another ALS-related gene
[104,105,106

&&

]. Additional loci, including
B4GALNT1, G2E3-SCFD1 and TRIP11-ATXN3, have
been identified with a gene-based analysis as disease-
associated genes [106

&&

]. This study suggests that
there are genetic contributions to the observed alter-
ations in energy metabolism in ALS patients, beyond
familial ALS. Further investigations are required to
identify additional mechanisms and decipher their
role and contributions to the observed metabolic
defects.
6 www.co-neurology.com
CONCLUSION

Weight loss has emerged in the last ten years as a
strong prognostic marker in ALS. Clinical, epidemi-
ological, and experimental evidence all converge to
highlight the importance of this process in disease
progression. The recent clinical studies are very
encouraging in pursuing nutritional therapeutic tri-
als and identifying anatomical and biological ele-
ments involved in weight loss, as well as
subpopulations of patients that might benefit from
dietary adaptations. Dietary correction of the dysre-
gulated energy metabolism in ALS is likely to emerge
as a future disease-modifying approach in ALS.
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